skip to main content


Search for: All records

Creators/Authors contains: "Zhu, Hongyang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Improving the low charge separation efficiency, poor light absorption capacity, and insufficient active sites of photocatalysts are the important challenges for CO 2 photoreduction. In this study, a Mo modified InOOH/In(OH) 3 heterojunction with enhanced CO 2 reduction efficiency was synthesized in situ by using an In(OH) 3 monatomic lamellar material with isolated In atom sites exposed on its surface. And bandgap tuning via the energy levels formed by Mo doping and vacancy defect engineering can simultaneously improve visible light absorption and photogenerated charge separation. The results of experimental characterization and DFT calculation show that the Mo impurity energy levels, O defect energy levels, and surface Mo atoms existing in the InOOH phase can act as an electron transfer ladder in cooperation with the In defect energy levels in the In(OH) 3 phase, thereby promoting electron transfer between heterogeneous interfaces. Under visible light irradiation, the evolution rates of CH 4 and CO of the Mo modified InOOH/In(OH) 3 photocatalyst are more than ∼11 and ∼8 times higher than those of InOOH, respectively. This work provides new insights into the design of the CO 2 photoreduction platform through a collaborative strategy of bandgap tuning, transition metal doping, and heterostructure construction. 
    more » « less
  2. High-quality single-component white phosphors are instrumental in realizing high-efficiency devices. Rare earth fluorides and carbon quantum dots have great potential in the white light-emitting diode (WLED) field due to their unique advantages. Here, Rare-earth single atom based NaGdF4:Tb3+/Eu3+@C:N/Eu3+ single phosphor with tunable full-color luminescence was reported. The results of density functional theory (DFT) calculation and experimental characterization show that C atoms cannot be replaced by Eu3+, but C atoms are more favorable for anchoring Eu3+ single atoms. The DFT was employed to optimize the structures of the C:N/Eu3+ and NaGdF4:Tb3+/Eu3+, and calculate the work function, optical properties, and charge density difference. The obtained tunable full-color single phosphor can emit stable light from blue to red or even white. The constructed WLED devices also have stable and excellent color performance, that is, a color rendering index of up to 95 and a lower color temperature, and it has broad application possibilities in WLEDs. 
    more » « less
  3. All-inorganic lead halide perovskite (CsPbX3) nanocrystals (NCs) have emerged as a highly promising new generation of light emitters due to their extraordinary photophysical properties. However, the performance of these semiconducting NCs is undermined due to the inherent toxicity of lead and long-term environmental stability. Here, we report the addition of B-site cation and X-site anion (pseudo-halide) concurrently using Ba(SCN)2 (≤50%) in CsPbX3 NCs to reduce the lead and improve the photophysical properties and stability. The as-grown particles demonstrated an analogous structure with an almost identical lattice constant and a fluctuation of particle size without altering the morphology of particles. Photoluminescence quantum yield is enhanced up to near unity (~98%) by taking advantage of concomitant doping at the B- and X-site of the structure. Benefitted from the defect reductions and stronger bonding interaction between Pb2+ and SCN− ions, Ba(SCN)2-based NCs exhibit improved stability towards air and moisture compared to the host NCs. The doped NCs retain higher PLQY (as high as seven times) compared to the host NCs) when stored in an ambient atmosphere for more than 176 days. A novel 3D-printed multiplex color conversion layer was used to fabricate a white light-emitting diode (LED). The obtained white light shows a correlated color temperature of 6764 K, a color rendering index of 87, and luminous efficacy of radiation of 333 lm/W. In summary, this work proposes a facile route to treat sensitive lead halide perovskite NCs and to fabricate LEDs by using a low-cost large-scale 3-D printing method, which would serve as a foundation for fabricating high-quality optoelectronic devices for near future lighting technologies. 
    more » « less
  4. Only when the interfacial charge separation is enhanced and the CO 2 activation is improved, can the heterojunction nanocomposite photocatalyst be brought into full play for the CO 2 reduction reaction (CO 2 RR). Here, Er 3+ single atom composite photocatalysts were successfully constructed based on both the special role of Er 3+ single atoms and the special advantages of the SrTiO 3 :Er 3+ /g-C 3 N 4 heterojunction in the field of photocatalysis for the first time. As we expected, the SrTiO 3 :Er 3+ /g-C 3 N 4 (22.35 and 16.90 μmol g −1 h −1 for CO and CH 4 ) exhibits about 5 times enhancement in visible-light photocatalytic activity compared to pure g-C 3 N 4 (4.60 and 3.40 μmol g −1 h −1 for CO and CH 4 ). In particular, the photocatalytic performance of SrTiO 3 :Er 3+ /g-C 3 N 4 is more than three times higher than that of SrTiO 3 /g-C 3 N 4 . From Er 3+ fluorescence quenching measurements, photoelectrochemical studies, transient PL studies and DFT calculations, it is verified that a small fraction of surface doping of Er 3+ formed Er single-atoms on SrTiO 3 building an energy transfer bridge between the interface of SrTiO 3 and g-C 3 N 4 , resulting in enhanced interfacial charge separation. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC HAADF-STEM) and adsorption energy calculations demonstrated that the exposed Er single-atoms outside the interface on SrTiO 3 preferentially activate the adsorbed CO 2 , leading to the high photoactivity for the CO 2 RR. A novel enhanced photocatalytic mechanism was proposed, in which Er single-atoms play dual roles of an energy transfer bridge and activating CO 2 to promote charge separation. This provides new insights and feasible routes to develop highly efficient photocatalytic materials by engineering rare-earth single-atom doping. 
    more » « less
  5. null (Ed.)